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Digital Elevation Models 2 

Abstract 3 

Published evidence shows that views to blue spaces (e.g. ocean, lake, and river) have 4 

positive effects on humans’ health and mental well-beings. However, quantitative assessment of 5 

blue space visibility is challenging for large spatial areas with complex terrain or built environment. 6 

The assessment approach introduced in this study applied an innovative sampling strategy which 7 

generalizes blue space as a lattice of points and calculate visibility of all the points within a 8 

continuous area. Compared to traditional viewpoint-based visibility analyses, this approach can 9 

assess blue space visibility over a large area at a fine spatial resolution. The raster output can be 10 

overlaid with data recorded at different spatial units to study the associations between blue space 11 

visibility and socio-economic and health disparities. Additionally, this approach can be applied to 12 

assess impact of buildings to blue space visibility over space by comparing outputs generated from 13 

different digital elevation models (DEM). The utility of this approach was demonstrated in a case 14 

study in the island of O’ahu, Hawaii, which finds that: (1) wealthier and older people possess 15 

higher share of ocean visibility; (2) man-made buildings have caused large shrink and 16 

redistribution of ocean visibility; (3) high-rise buildings have particularly high and extensive 17 

impact to ocean visibility. The findings suggest that improved environmental assessment processes 18 

and planning policies are needed to mitigate the inequality of visible blue space in different 19 

population groups and preserve the shrinking visible blue space in the process of urban 20 

development.  21 



 

1 Introduction 22 

The belief that viewing natural environment (such as water and vegetation) can ameliorate 23 

stress and illness dates back to the early ages, which influenced the landscaping of early cities in 24 

Persia, China and Greece (Marcus and Barnes, 1999). Contemporary psychological studies 25 

confirmed the positive effects of viewing natural scenes on stress reduction compared with viewing 26 

scenes of built environment (Ulrich, 1981, 1999, Velarde et al. 2007). Particularly, views to the 27 

aquatic elements (e.g. ocean, lake, and river) in the natural environment are often perceived with 28 

higher restorativeness (Laumann 2001), positive influence on psychophysiological states (Ulrich, 29 

1981, Laumann 2003), and stress-reducing and mood-enhancing effects (Karmanov and Hamel, 30 

2008). Such restorative and healing aquatic environments are referred to as blue space. The 31 

emotional, healing and restorative effects of visible blue space are systematically reviewed in 32 

(Völker and Kistemann 2011). Considering the increasing threat of stress-related diseases to our 33 

society, more attention should be paid to the benefits of visible blue space on the public mental 34 

well-being and environmental injustice associated with unequal share of visible blue space in 35 

different population groups. Investigations to these issues can be facilitated by a quantitative 36 

assessment of visible blue space in people’s living environment.  37 

The economic value of views to blue space has been widely recognized. Environmental 38 

scenes containing water are associated with higher perceived attractiveness and higher willingness 39 

to pay or/and visit than those without water (White et al. 2010). For instance, hotel rooms and 40 

residential homes with a view of blue space are higher priced (Luttik 2000; Lange and Schaeffer 41 

2001). In the city of Honolulu, Hawaii, around 81% of serious inquiries for home purchase express 42 

a desire for ocean views (Krischke 2017). In the meantime, views to blue space are dynamically 43 

changing in the process of urban development. Waterfront buildings may create views of blue 44 



 

space for residents in the buildings, but interrupt views in other areas. The importance of 45 

preserving scenic landscape (including blue space) has been recognized at the policy level. The 46 

National Environmental Policy Act (1969) has determined preserving the aesthetic aspect of the 47 

environment as one of the Federal responsibilities (Council on Environmental Quality, 1969). At 48 

the state level, Hawaii Environmental Policy Act of 1969 has listed ‘affecting on scenic vistas and 49 

view planes’ as one of the thirteen administrative criteria to assess potential environment impact 50 

of an action (Office of Environmental Quality Control 2012). Despite the recognized importance 51 

of scenic landscape in planning documents, there is a general lack of practical methods and tools 52 

to quantify impact of man-made building to visible blue space, which is a major element of scenic 53 

landscape in many coastal cities. The social and economic implications of the change of visible 54 

blue space deserve further investigation. 55 

Views of blue space are unevenly distributed in space. In geographical information systems 56 

(GIS), visibility analysis (also called viewshed analysis) can be performed in digital terrain models 57 

to determine areas visible from one or multiple specified observation locations (viewpoints). 58 

However, viewshed analysis in current GIS cannot be directly applied to assess visibility of blue 59 

space for two main reasons. First, analyzing the amount of visible blue space in an area can be 60 

computing-intensive. The computation of viewshed from a viewing area (e.g. a coastal area) to a 61 

target area (the ocean surface) includes a huge number of line-of-sight (LOS) analyses, which 62 

would result in a long processing time. Second, the output of viewshed analysis is a binary raster 63 

in which 0 stands for invisible from the observation point(s) and 1 means visible, which, however, 64 

does not consider visual significance from a human perspective. The visual significance of an 65 

object decays as its distance to a human observer increases due to the shrinking size of the object 66 



 

in the observer’s vision, the aspect of the object (e.g. standing, laying or siding), and atmospheric 67 

interference.  68 

This study introduced an innovative approach to assess visibility of aquatic blue space with 69 

a flat surface (e.g. ocean, lake, and calm rivers). This approach applies a reverse sampling strategy 70 

which generalizes blue space as a lattice of points and aggregates visibility of all the points within 71 

a continuous area. The computed visibility takes into account the distance and vertical aspect of 72 

blue space to observers. Compared to traditional visibility analyses based on viewpoints, this 73 

approach can calculate blue space visibility within a spatial large area at a fine resolution. The 74 

utility of the approach was demonstrated in a case study of analyzing ocean visibility on the island 75 

of O’ahu, Hawaii, which led to 5m-resolution rasters of ocean visibility for the entire island. The 76 

derived ocean visibility rasters were then overlaid with other spatial data to analyze the relations 77 

between ocean visibility and a number of socio-economic and mental health variables. 78 

Furthermore, we demonstrated the utility of this approach in assessing the impact of man-made 79 

buildings to ocean visibility by comparing outputs generated using different digital elevation 80 

models (DEMs). The introduced approach can be potentially applied as a planning tool to assess 81 

building impacts to visible blue space in the environment. It can also benefit scientific research 82 

about the health, social disparities and environmental justice issues associated with blue space 83 

visibility.  84 

2 Related Work 85 

Viewshed analysis (also known as visibility analysis) is a common terrain analysis function 86 

in GIS. Conventional viewshed analysis generates a binary output including visible areas (denoted 87 

as 1s) and non-visible areas (0s). Viewsheds of multiple observation points can be combined to a 88 



 

cumulative viewshed representing the number of times a location can be seen from the observation 89 

points (Wheatley 1995). Viewshed analysis has been widely used in terrain-based spatial modeling, 90 

such as locating the best site for an observation tower for forest fire or diseases (Lee 1991), 91 

planning a scenic path planning in a national park (Stucky 1998), and selecting locations for 92 

telecommunication towers (Floriani et al. 1994) and radar antenna (Lubczonek 2011). The binary 93 

viewshed and cumulative viewshed become standard terrain analysis tools in prevalent GIS 94 

packages such as ArcGIS® and QGIS®. 95 

However, the binary output of conventional viewshed analysis does not express the degree 96 

of visibility from a human perspective, which is termed Visual Magnitude (VM) in the field of 97 

graphic design. Iverson (1985) defined VM as a measure of visible landscape combining the 98 

distance, aspect of a land plane or object from the observer and times seen. Iverson (1985) cited 99 

the VIEWIT program developed by Travis et al. (1975) for calculating visual perception sensitivity 100 

(a similar concept to VM) based on manually digitized terrain data. Later, efforts have been made 101 

to incorporate VM into GIS-based viewshed analysis. For instance, Fisher (1994) applied fuzzy 102 

set theory to model the decreasing clarity of the view of objects in different distances due to 103 

atmospheric conditions. Similarly, Kumsap et al. (2005) modelled the effect of distance decay in 104 

visibility analysis for 3D forest landscape, utilizing viewshed analysis in GIS. However, these 105 

methods only consider distance decay of visual magnitude but do not take into account the relative 106 

aspect of the object to a viewer.  107 

More recently, Domingo-Santos et al. (2011) proposed an algorithm to quantify visual 108 

exposure (a similar concept of VM) of terrain within a viewshed. Instead of a binary output, the 109 

visual exposure is described by numerical scores, according to the angle or covered surface area 110 

on the retina of an observer. Chamberlain and Meitner (2013) conducted a route-based visibility 111 



 

analysis that compares standard viewshed (binary output), cumulative viewshed (times seen), and 112 

VM which is evaluated by slope, aspect, and distance of a terrain to a viewer. The VM-based 113 

analysis can identify areas in landscape that are potentially more apparent and attention-grabbing 114 

seeing along a route. Nutsford et al.’s approach (2015 and 2016) incorporates both distance decay 115 

and aspect of terrain surface to provide personalized visibility analysis for green and blue space. 116 

This approach was applied to estimate the visibility of blue and green spaces at centroids of 117 

meshblocks (the finest geographic division in New Zealand) as viewpoints, which is then health 118 

and social variables. However, the uncertainty of the analysis needs further evaluation, especially 119 

in a complex terrain or built environment where the visibility changes dramatically within a short 120 

distance and visibility at a viewpoint may not represent entire spatial unit (e.g. meshblock). 121 

Computational efficiency is a long-standing challenge for viewshed analysis. s direct 122 

viewshed algorithm consists of numerous line-of-sight (LOS) analyses projected from a viewing 123 

point to all other points in the terrain. The direct algorithm (also called R3 algorithm) is inefficient 124 

as the algorithm repeats the visibility calculations of points closer to the viewing points when 125 

estimating the visibility at a farther point. Thus, the computation of R3 is proportion to not only 126 

the size of the grid, but also the distance from the viewing point (Izraelevitz 2003). Alternatively, 127 

the R2 and XDraw algorithm make an approximation of the visibility at a point based on previously 128 

calculated visibility of points closer to the viewing point (Franklin and Ray 1994). R2 and XDraw 129 

are substantially more efficient than R3 but are criticized for their lower accuracies (Franklin and 130 

Ray 1994; Kaučič and Zalik 2002). Variants of these viewshed algorithms with different 131 

optimization techniques have been developed (Izraelevitz 2003; Andrade et al. 2011; Feng et al. 132 

2015). Please refer to Chamberlain and Meitner (2013) for a more extensive review of viewshed 133 

algorithms and applications. 134 



 

3 Method 135 

3.1 Digital Elevation Models 136 

The DEM used for this study are processed from point cloud captured by airborne Light 137 

Detection and Ranging (LiDAR) systems. LiDAR is an active remote sensing technique that uses 138 

laser light to sample the surface of the earth, producing highly accurate x, y, z measurements which 139 

are called point cloud. Laser pulses emitted from a LiDAR system reflect from objects both on and 140 

above the ground surface. One emitted laser pulse can generate one or many returns. Digital 141 

Surface Model (DSM, such as Figure 1, left) is generated using the highest returns from different 142 

cells of a raster. Digital Terrain Model (DTM, such as Figure 1, right) is generated using the last 143 

returns reflected from the ground. Both DSM and DTM share a generic term digital elevation 144 

model (DEM). The specific methods of deriving DSM and DTM are documented in (Dong and 145 

Chen 2017).  146 

 147 

Figure 1: Example of digital surface model (left) and digital terrain model (right) 148 

LiDAR point cloud data used to create the DEMs are publicly available in the online 149 

archive of NOAA Digital Coast (https://coast.noaa.gov/htdata/lidar1_z/). The LiDAR data were 150 

acquired from June to August 2013 and cover most low-lying coastal areas on the island of O’ahu 151 



 

(Figure 2). In this study, the LiDAR point cloud data were processed into three DEMs at a 5-meter 152 

resolution. This resolution is sufficient to portray outlines of buildings on the ground and can 153 

control the data size and computational workload at a moderate level. First, a DTM was created to 154 

represent the bare terrain without aboveground features. Second, a DSM was created to represent 155 

the ground surface with aboveground features. We acknowledge that other aboveground objects 156 

(e.g. trees) also have impact to ocean visibility. In order to focus on the impact of buildings to 157 

ocean visibility, only building heights were included in the DSM and tree canopies were removed. 158 

The separation between building heights and tree canopies was guided by a land cover layer from 159 

the C-CAP database of NOAA. The elevation of the derived DSM represents building heights in 160 

only impervious (developed) land in the land cover data. In undeveloped areas, DTM and DSM 161 

are identical, both representing bare ground height. Similar methods of building detection are 162 

reviewed in (Yan, Shaker, and El-Ashmawy 2015). Third, an additional DSM was created to 163 

represent ground surface excluding buildings higher than 50 meters. This DSM was specifically 164 

used for analyzing the impact of buildings higher than 50 meters to ocean visibility. The void areas 165 

(mostly in the mountains) in the LiDAR data were filled by resampling 10-meter DEM data 166 

acquired from USGS (Figure 2). 167 



 

 168 

Figure 2: Coverage of LiDAR data in O’ahu. 169 

3.2 Ocean Surface Modeling 170 

Ocean surface is nearly a flat plane with slight curvature of the spherical earth. Assuming 171 

the earth is a sphere with a 6,371km mean radius, the furthest visible distance in the island is 123.7 172 

km, which is at the peak of Mount Ka’ala (highest point in O’ahu, 1226 meter above sea level). At 173 

this position, more than 95% of the visible ocean surface is within 20 km from the coast line. 174 

Beyond 20km, ocean visibility decays rapidly due to the earth curvature and atmospheric 175 

interference (e.g. air moisture, air quality, and cloud). Lower areas in the island have even shorter 176 

visual distance in the ocean. Thus, a 20km buffer area from the coast line was used to represent 177 

ocean area. 178 

The ocean area includes an infinite number of visible points. Computing visibility from the 179 

island to every point in the ocean is computationally impossible and unnecessary. In our approach, 180 

the ocean surface was generalized into a lattice of points, each of which represents an 8km2 181 

hexagon area in the ocean surface (Figure 3). The distance from a point to the nearest neighbor 182 



 

point is 3.039km. In total, 530 hexagons were created within the 20km buffer area and their 183 

centroids were selected to represent the ocean surface. Thereby, visibility analysis to the ocean 184 

surface is reduced to visibility analysis to the 530 representative points. 185 

 186 

Figure 3: Generalizing ocean surface to a lattice of points 187 

3.3 Ocean Visibility Calculation 188 

The assessment approach is based on an aggregation of weighted viewsheds of a lattice of 189 

representative points in the ocean. The procedure includes the three general steps. First, using 190 

viewshed analysis, a binary viewshed raster (0 = invisible, 1 = visible) was computed for a point 191 

in the lattice. Second, a visibility raster covering the island was computed by multiplying the binary 192 

viewshed by visual significance of the point at all pixels in the DEM. Finally, iterating the previous 193 

two steps for all representative points in the ocean and summing up the visibility rasters of the 194 

points, a raster of the overall ocean visibility can be obtained. 195 

In this approach, visual magnitude of a point is quantified by the visual angle occupied by 196 

the hexagon in a human observer’s vision. Imagine that an increment of distance in the ocean 197 

decreases as it moves away from the observer due to the decreasing vertical aspect (Figure 4 (a)). 198 



 

In other words, an area in the ocean occupies a smaller view angle when it is further away from 199 

the observer (Figure 4 (b)). As demonstrated in Figure 4 (c), given the elevation of an observer (h), 200 

horizontal distance from the observer to a point (d), and mean diameter of the hexagon (∅ =201 

3.027𝑘𝑘𝑘𝑘), the view angle (a) to the hexagon can be calculated using the law of cosines: 202 

𝒂𝒂 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 (
𝒆𝒆𝟐𝟐 + 𝒇𝒇𝟐𝟐 − ∅𝟐𝟐

𝟐𝟐𝒆𝒆𝒇𝒇
) 

Equation 1 

Because 𝑒𝑒 = �ℎ2 + (𝑑𝑑 − ∅
2

)2 and 𝑓𝑓 = �ℎ2 + (𝑑𝑑 + ∅
2

)2, Equation 1 can be transformed to:  203 

𝒂𝒂 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 (
𝒉𝒉𝟐𝟐 + 𝒅𝒅𝟐𝟐 − �∅𝟐𝟐�

𝟐𝟐

𝒆𝒆𝒇𝒇
)  

Equation 2 

 

Finally, the ocean visibility (I) at an observing point is defined as the sum of view angles 204 

of all visible points: 205 

𝑰𝑰 =
∑ 𝒂𝒂𝒊𝒊 ∗ 𝑽𝑽𝒊𝒊𝒏𝒏
𝒊𝒊=𝟎𝟎

𝒏𝒏
  

Equation 3 

 

where 𝑉𝑉𝑖𝑖 is the binary viewshed of Point  𝑖𝑖, 𝑎𝑎𝑖𝑖 is the visual angle of the hexagon centered 206 

at Point 𝑖𝑖, and 𝑛𝑛 is the total number of points (hexagons).  207 

The elevations (ℎ ) were obtained from the DEMs. The horizontal distances (𝑑𝑑 ) were 208 

derived from rasters of Euclidean distances from the points in the ocean. Using map algebra, a 209 

viewshed raster weighted by the view angle (𝑎𝑎) was computed for every point in the lattice. Finally, 210 

all 530 weighted viewsheds were summed, creating a 5m-resolution raster of ocean visibility. The 211 

ocean visibility at each pixel in the DEM is dependent on the elevation of the pixel, the number of 212 

visible points, and the distances from the visible points to the pixel. Three rasters of ocean visibility 213 

(𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷, 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 and 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷<50) were computed using the DTM, the DSM, and the DSM with no higher-214 

than-50m buildings respectively. 215 



 

 216 

Figure 4: Computing the view angle to an ocean area. (a) 5-km distance increments at 217 

different distances from an observer. (b) View angles of the same ocean area at different 218 

distances. (c) Computing the view angle (a) to an ocean area using the law of cosine. 219 

3.4 Implementation 220 

The visibility analysis approach introduced in this study implements an area-to-area 221 

visibility analysis by representing the target area as a point lattice. The result is an aggregation of 222 

all visibility rasters computed from the points, weighted by visual magnitude at different locations. 223 

This study utilizes the viewshed function in ArcGIS® for Desktop v10.3 based on the direct 224 

algorithm (R3 algorithm) due to its accuracy and reliability. The density of the point lattice can be 225 

adjusted according to different accuracy requirements and computation budget. The computation 226 

of the ocean indices is completed in a desktop computer with Intel(R) Xeon(R) E5-1660 v4 227 

3.20GHz CPU. Using one computing instance, the average processing time of ocean visibility for 228 

one point is ~680 seconds, which includes 600 seconds for viewshed analysis, 45 seconds for 229 

computing Euclidean distance, and 35 seconds for adding the weighted viewsheds into the overall 230 

visibility raster. Theoretically, the entire computation for all the 530 points in the lattice would 231 

take ~100 hours (4.2 days) using a sequential program in one computing instance. However, the 232 

algorithm consists of independent processes and can be parallelized into multiple computing 233 

instances. In the test of employing eight parallel instances, the processing time of the entire 234 



 

program was reduced to ~12 hours, which is approximately 1/8 of the processing time in a 235 

sequential program.  236 

3.5 Statistical Analyses 237 

Finally, the relations between ocean visibility and a number of socio-economic and health 238 

variables are examined by overlaying the raster of ocean visibility and spatial data in different 239 

spatial units. The boundaries and prices of land parcels are acquired from the Hawaii Open Data 240 

Portal maintained by the Office of Planning (http://geoportal.hawaii.gov/), based on the 2017 241 

assessment. The socio-economic variables (including income, age and race composition) are 242 

derived from 2015 U.S. Census data at a block group level. The mental health variables (including 243 

ratio of depressive order and number of mental bad days in past 30 days) were acquired from 244 

Hawaii Health Data Warehouse (2015) at a community level (http://hhdw.org/health-reports-data/245 

category/mental-health/). The descriptions of the mental health variables are documented in (State 246 

of Hawaii, 2015). In the analyses with socio-economic and health variables, average ocean 247 

visibility was calculated only in developed areas (impervious area) which represent most 248 

residential areas. Ocean visibility in undeveloped land, parks and green space were excluded in 249 

the computation. The student’s t-test is used to compare the prices of residential land parcels with 250 

and without an oceanview. Regression analyses between ocean visibility and the individual 251 

variables are conducted and the results are reported in Table 1. Scatter plots and regression lines 252 

are illustrated in Figure 8. 253 

http://geoportal.hawaii.gov/


 

4 Analysis Results 254 

4.1 Spatial Distribution of Ocean Visibility 255 

Figure 5 shows ocean visibility raster calculated using the DSM model (i.e. 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷), which 256 

represents the real condition with buildings. Not surprisingly, areas with high ocean visibility are 257 

located along the mountain ridges at high elevations, for example, Koʻolau Range extending from 258 

the south-east corner of O’ahu to the north and Waiʻanae Range in parallel at the western side of 259 

O’ahu. These areas are well-known for extensive oceanview to multiple directions. The highest 260 

ocean visibility is located at 21.32310° N, 157.73710° E at 765m elevation. From Google Earth 261 

we can see this location has an extensive oceanview to both the south and northwest side of the 262 

ocean (Figure 6).  263 

 264 

Figure 5: Ocean visibility in O’ahu (a semi-transparent overlay on a hillshade background). 265 



 

 266 

Figure 6: Google Earth view at the location with highest ocean visibility (21.32310° N, 267 

157.73710° E). 268 

Averaging ocean visibility within land parcels, it is known that 751,482 (57.3%) residential 269 

land parcels in O’ahu have an oceanview (i.e. 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 > 0). According to the most recent land price 270 

data from County and City of Honolulu (2017 September), the average price of land parcels with 271 

an oceanview is $1,009,756, which is significantly (p<0.001) higher that without an oceanview 272 

($786,584). Figure 7 shows the distribution ocean visibility averaged in land parcels of the whole 273 

island, zoomed-in view to in the Waikiki area (a tourist attraction with ocean-front hotels and 274 

apartments), and the contrast between the Waialae Iki (a well-known up-scale residential 275 

community) and the Wailupe area (an community with more affordable homes). 276 



 

 277 

Figure 7: (a) Average ocean visibility in land parcels. (b) The Waikiki area. (c) The Waialae Iki 278 

area in the ridge at the left side and Wailupe Valley at the right side.  279 

4.2 Socio-Economic and Health Conditions 280 

4.2.1 Income and House Value 281 

As expected, census block groups with a higher ocean visibility generally have a higher 282 

income and housing price (Figure 8(b)). Although the linear relations are significant, the low 283 

adjusted R-square values indicates that ocean visibility only explains a small portion of the 284 

variance of income and housing price (Table 1). Ranking the block groups into four quartiles by 285 

ocean visibility, it becomes evident that the average median household income in Q4 block groups 286 

(the highest ocean visibility) is much higher than that in Q1-Q3 block groups (Figure 9 left). 287 

 288 



 

  289 

Figure 8: Scatter plots and regression lines between ocean visibility and socio-economic 290 

and health variables: (a) median house value (million $), (b) median age, (c) median household 291 

income (thousand $), (d) Ratio of depression disorder, (e) ratio of no mental bad in past 30 days. 292 

(f) ratio of mental bad for equal or more than 7 days in past 30 days. 293 

Table 1: Results of regression analyses between ocean visibility and socio-economic and 294 

health variables. Significant relations (p<0.01) are highlighted in the bold font. 295 

 296 

4.2.2 Age 297 

The linear relation between ocean visibility and median age is also significant, indicating 298 

the median age of a block group increases as ocean visibility increases (Figure 8 (c)). This trend 299 

is also reflected in the ratios of older adults (>65 years old) and children (<18 years old) in the four 300 

Dependent variables β p Adjusted R2 DF
Median housing value (million $) 0.08484 <0.001 0.0412 511
Median household income (thousand $) 13.34800 <0.001 0.0759 556
Median age 1.9462 0.0024 0.0141 575
Ratio of depressive disorder -2.903 0.5177 -0.0483 11
Ratio of mental bad for < 7 days in past 30 days 69.792 0.4228 -0.0262 11
Ratio of mental bad for >= 7 days in past 30 days -3.2472 0.3215 0.0064 11



 

quartiles of ocean visibility. The ratio of older adults is increasing from 12.5% in the Q1 block 301 

groups (least ocean visibility) to 17.1% in the Q4 block groups (highest ocean visibility). In 302 

contrast, the ratio of children presents a nearly reversed trend: the ratio of children decreases from 303 

24.1% in Q1 to 19.2% in Q3, and slightly bounced back in Q4 to 20.9%. Figure 10 (left) illustrates 304 

the proportions of different age groups living in the four quartiles of ocean visibility, indicating 305 

that older adults have the largest proportion (27.7%) living in the Q4 block groups, while children 306 

have the largest proportion (29.5%) living in the Q1 block groups. 307 

 308 

Figure 9: Average median household income (left) and ratios of older adults (>65) and children 309 

(<18) (right) in the quartiles of block groups. 310 

4.2.3 Race 311 

As shown in Figure 10 (right), 36.3% of American Indians and Alaska Native are living in 312 

Q1 block groups, which is the highest ratio among all race groups, followed by Black and African 313 

Americans (31.7%). Asian people have the lowest percentage living in Q1 (i.e. 23.6). In Q4 block 314 

groups, families with two or more races have the highest percentage (27.6%), followed by Native 315 

Hawaiians and Pacific Islanders (25.4%) and White (25.0%). Only 19.7% Black and 20.6% 316 



 

American Indians and Alaska Natives reside in Q4 block groups, which are the lowest among all 317 

the race groups. 318 

 319 
Figure 10: Proportions of different age and race groups in quartiles of ocean visibility 320 

4.2.4 Mental Health 321 

The regression analysis between ocean visibility and the health variables are not significant, 322 

possibly due to the small sample size (13 samples). The best fit regression lines in Figure 8 (d-f) 323 

generally reflect that an increase in ocean visibility would lead to (1) lower ratio of depressive 324 

disorder, (2) lower ratio of mental bad for more than 7 days in past 30 days, and (3) higher ratio 325 

of no mental bad in past 30 days. However, these trends need to be confirmed in analysis with a 326 

larger sample size before solid conclusions can be drawn. 327 

4.3 Building Impact 328 

The impact of buildings to the ocean visibility in O’ahu was analyzed by comparing ocean 329 

visibility rasters computed using the different DEMs (i.e. 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷, 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷, and 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷<50). In the 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 330 

(without buildings), 824.8km2 (53.3% of the total area) in O’ahu has an oceanview (i.e. 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 > 0). 331 

In 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷, which represents the current situation with buildings, area with an oceanview decreases 332 

to 691.7km2 (44.7% of the total area). The contrast between 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 and 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 suggests that area with 333 

an oceanview has shrunk 133.1km2 (16.1%) due to man-made buildings. As shown in Figure 11, 334 



 

most oceanview shrink occurred in foothill areas of mountains at a distance from the coast. 335 

Additionally, there are 419.2 km2 (27.1% of the total area) with a decreased ocean visibility (where 336 

𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 < 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷) where the oceanview is partially blocked by buildings. The spatial distribution of the 337 

change (loss and gain) of ocean visibility is displayed in Figure 12 (a). 338 

 339 
Figure 11: Shrunk oceanview in O’ahu. 340 

Gain of ocean visibility mostly occurs in ocean-front areas with tall buildings. For instance, 341 

in Figure 12 (c), spots of ocean visibility gain are in the downtown area of Honolulu where high-342 

rise buildings are concentrated. Meanwhile, these high-rise buildings have casted a ‘shadow’ (area 343 

with decreased ocean visibility) in the foothill areas behind them where ocean visibility has 344 

declined or vanished. Figure 13 is a picture taken at a location in the ‘shadow’, where the view of 345 

the ocean is mostly blocked by the buildings in the ocean front.  346 

Particularly, buildings higher than 50m have a greater impact to ocean visibility than lower 347 

buildings. In O’ahu, every m2 of developed area lead to 0.15 m2 of completely vanished oceanview 348 

and 0.43 m2 of decreased oceanview. Every m2 of 50m-high building causes 3.51 m2 of vanished 349 



 

oceanview and 180.3 m2 of decreased oceanview. Comparing Figure 12 (c) and (d), many shadow 350 

areas are diminished when buildings higher than 50m are removed. 351 

 352 
Figure 12: Impact of buildings to ocean visibility. (a) Difference between 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 and 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 353 

(i.e. 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 ) in the island of Oahu. (b) Building heights in downtown Honolulu. (c) 354 

Difference between 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷  and 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷  (i.e. 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 ) in downtown Honolulu;  (d) Difference 355 

between 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷<50 and 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷 (i.e. 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷<50 − 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷) in downtown Honolulu;   356 



 

 357 

Figure 13: The view at a location with reduced ocean visibility towards the ocean. 358 

5 Discussion 359 

This study introduced a quantitative assessment approach for the visibility of blue space, 360 

which is a vague concept usually stored in textual materials and people’s mind. In the case study 361 

in the island of O’ahu, the assessment results showed that the variation of ocean visibility is largely 362 

dependent on the terrain variation and man-made buildings. Areas with high ocean visibility are 363 

mostly located on mountain ridges which have extensive oceanview to multiple sides of the ocean. 364 

The identified areas of high ocean visibility can be validated from local experience and tourist 365 

guides. For instance, the position with the highest oceanview index is located near the top of the 366 

Wiliwilinui Ridge trail and the Kuliouou Ridge trail, which are featured as top scenic trails for 367 

panoramic oceanview in tourist guides (e.g. Journey Era 2017; TripAdvisor 2017).  368 

The spatial assessment of ocean visibility was related with socio-economic and health 369 

variables. The result quantified the desirability of oceanview in the real property market: land 370 

parcels with an ocean view are 28.4% more expensive than those without an oceanview. The linear 371 

relation between housing price and ocean visibility is significant at the block group level: the 372 

median housing value increases with the increase of ocean visibility (Figure 8 (a)). The analysis 373 

results show that wealthier and older adults tend to live in communities with higher ocean visibility. 374 



 

This finding could be explained by the accumulation of wealth as age increases so that older adualts 375 

are more likely to afford the higher price of properties with an oceanview. However, it is worth 376 

noting that children in the island have a lower share of oceanview (the highest proportion of 377 

children live in Q1 communities, as shown in Figure 10). We acknowledge that visual exposure to 378 

blue space is only one of the numerous factors that influence children’s physical and mental 379 

development. However, since the literature suggests that the visual perception to landscape has 380 

profound influence to children’s long-term memory (Yamashita 2002, Sebba 1991), place 381 

attachment (Morgan 2010) and social identities (Robertson et al. 2003, Bonaiuto et al. 1996), more 382 

efforts are needed to understand how the variation of visible blue space (as well as the loss of 383 

visible blue space) in this island is associated with children’s long-term mental and personality 384 

development, especially for the Hawaiian natives who have cultural connections with ocean but 385 

now increasingly live behind concrete forests. Moreover, the unequal shares of ocean visibility 386 

among different age, income and ethnic groups may constitute issues of environmental injustice, 387 

which has been discussed for green space in (Wolch et al. 2014, Kabisch and Haase 2013). In 388 

future studies, the introduce approach can be integrated with relevant data to further examine these 389 

issues. 390 

The preliminary results in this study did not show a statistically significant relation between 391 

ocean visibility and mental health variables, which is possibly due to the small sample size used 392 

in the analysis (13 samples). In the next phase, we plan to extend our analysis to other islands in 393 

Hawaii to create a larger sample size to further test the hypotheses. Alternatively, ocean visibility 394 

maps can be produced for other regions where final-scale mental health data are available. Most 395 

of the psychological studies about the health benefits of visible blue space are based on 396 

experiments or interviews with human participants viewing photos and videos including different 397 



 

scenes (e.g. Ulrich 1981, Laumann 2001, Karmanov and Hamel, 2008). These methods are usually 398 

limited to a small sample of participants and can be biased due to miscommunication, biased 399 

sample of participants, or unrealistic experiment settings (e.g. viewing photos is different from 400 

viewing the real scene). Instead, the ocean visibility map derived in this study quantify visible blue 401 

space in people’s living environment, which can be overlaid with mental health data recorded in 402 

different spatial scales to investigate the long-term influence for a much larger population. We 403 

acknowledge the strength of viewpoint-based approaches in assessing blue space visibility at 404 

specific locations (e.g. households). However, due to the issues related to data confidentiality (such 405 

as mentioned in Nutsford et al. 2016), mental health household level data are often reported within 406 

spatial boundaries. The visibility assessment conducted at a point (e.g. centroid) cannot completely 407 

represent the visibility within the entire boundary. In contrast, raster output of the introduced 408 

approach can be easily aggregated in different spatial units to be associated with other datasets.  409 

The impact of man-made buildings to ocean visibility became apparent by contrasting the 410 

assessments from the DTM (bare ground elevation) and the DSM (elevation with building heights). 411 

In O’ahu, man-made buildings have blocked the oceanview in 8.6% of the entire island and 412 

decreased the ocean visibility in 27.1% of the island. The loss of ocean visibility is mostly 413 

distributed in low elevation areas in the foothills, while the gain is concentrated at the oceanfront 414 

urban area. The high-rise buildings in the oceanfront have particularly higher impact to ocean 415 

visibility. Other than the neighborhood communities, the buildings can impact ocean visibility in 416 

communities several kilometers away. Given the positive relation between ocean visibility and the 417 

economic condition (income and property value) reflected in previous studies (e.g. Luttik 2000, 418 

Jim et al. 2009) and further confirmed in this study, the casted “shadows” behind the coastal 419 

development can potentially devalue properties, defer gentrification, and lead to growth of slums 420 



 

and poverty. Additionally, considering the numerous restorative and health effects of visible blue 421 

space documented in literature (Völker and Kistemann 2013), the low share of oceanviews in the 422 

‘shadows’ may increase the likelihood of mental stress, depression, and even behavioral disorders. 423 

The redistribution of ocean visibility caused by urban development can potentially intensify 424 

environmental injustice associated with visible blue space. This study suggests that improved 425 

urban planning, policy-making and legislation are needed to minimize the impact of urban 426 

development to visible blue space and mitigate the inequality of visible blue space in different 427 

population groups. 428 

Currently, environmental policy regarding building impact to ocean visibility is still partial 429 

and fragmented. At the national scale, the National Environmental Policy Act 1969 (NEPA) 430 

requires a detailed statement and mitigation recommendation for major federal actions (e.g. 431 

policies, plans, programs, and projects) significantly affecting the quality of the human 432 

environment (Wood 2003). Non-economic goals such as aesthetic and scenic quality, visibility 433 

and air quality, and noise has been included in environmental impact statements institutionally, 434 

especially for the impacts of energy technologies on scenic quality (Covello et al. 2013). 435 

Psychological assessment research and techniques have been applied to support such assessment 436 

from an observer-based perspective (Covello et al. 2013). However, the NEPA policies are rather 437 

limited to major federal actions and do not apply to state actions or most private projects unless a 438 

federal permit is required (Wood 2003).  439 

At the state level, the environmental assessment policies practiced in Hawaii has identified 440 

scenic view as a type of significant impact on the environment, however the applicability of the 441 

law is still limited. The Hawaii Environmental Policy Act (HEPA) have identified administrative 442 

criteria to determining “significant impact on environment”, including “substantially affects scenic 443 



 

vistas and view planes identified in county or state plans or studies” (Office of Environmental 444 

Quality Control 2012). However, in HEPA, only a few instances are considered as statutory trigger 445 

conditions in which an environmental assessment process becomes mandatory (Office of 446 

Environmental Quality Control 2012). These trigger conditions are limited to development in State 447 

and County lands, conservation district, historic site, and protected shorelines. Despite the Hawaii 448 

Ocean Resources Management Plan (Hawaii State Office of Planning 2013) recognizes the 449 

protection, preserving, and possibly restoring scenic and open space resources as one of their 450 

policy objective, they also acknowledge that scenic and open space resource conservation has not 451 

receive top priority in past planning decisions partially due to the lack of standard analytical 452 

methods to assess the impact perception. The proposed method can be used to evaluate the impact 453 

of new buildings to oceanviews in a larger area to support the county or state plans to minimize 454 

the cumulative long term impacts. In addition to oceanview, the most attractive landscape element 455 

in the study area, a comprehensive assessment including other scenic elements (e.g. greenspace) 456 

and unsightly elements (e.g. wind turbines) should be conducted to fully understand the impact of 457 

buildings to the overall scenery in the island. 458 

The proposed method of calculating blue space visibility is based on a cumulative viewshed 459 

analysis to calculate the amount of blue space that can be seen at different locations in a digital 460 

elevation model (DEM). Different from existing methods, this method applies reverse viewshed 461 

analysis to calculating the amount of blue space (represented by a point lattice) that can be viewed 462 

in a terrain. The output of the proposed method is a 5m resolution raster with quantitative visibility 463 

scores. Compared to other methods that calculate visibility at pre-determined point locations, the 464 

high-resolution raster can capture the variation of blue space visibility in a complex terrain or 465 

urban environment, which is important for evaluating building impacts to the blue space visibility. 466 



 

The viewshed analyses of the representative points are calculated using the built-in function in 467 

ArcGIS® based on a direct viewshed algorithm. The efficiency of the method can be improved by 468 

employing more efficient viewshed algorithms such as XDraw and R2 (Franklin and Ray 1994). 469 

Additionally, non-uniform sampling lattice (such as points with changing density or TIN) can be 470 

considered. The next phase of research will include a systematical assessment that compares the 471 

accuracy and efficiency of the different algorithms and sampling methods in different types of 472 

terrain. Alternatively, the computing time of the method can be shortened by employing more 473 

computing instances in a parallel computing system. A preliminary report of the performance and 474 

scalability of the approach was provided in this study. With the development of CyberGIS (i.e. 475 

GIS built on cyberinfrastructure) (Wang et al. 2013, Shook et al., 2016), the proposed assessment 476 

method has the potential to scale up for more precise assessments with a denser point lattice or 477 

extended assessment for a larger area. 478 

6 Conclusion 479 

This study introduced a quantitative approach to assess visible blue space and analyze 480 

building impact to visible blue space using digital elevation models (DEM). Using this approach, 481 

visibility of blue space, which used to be a vague concept stored in people’s mind and textual 482 

materials, can be quantified as numerical scores over space. Compared with traditional visibility 483 

analyses based on viewpoints, the introduced approach takes a reverse sampling approach to 484 

generate a continuous raster of blue space visibility at a fine spatial resolution. The output raster 485 

covers a large spatial area and can be associated with data recorded at different spatial units to 486 

study the health and socio-economic issues (e.g. environmental justice) associated with blue space 487 

visibility. Further, this approach enables spatial assessments of building impact to blue space 488 



 

visibility by comparing visibility rasters computed using different DEMs (DTM, DSM and DSM 489 

without high buildings). The algorithm of this assessment approach can be easily scale-up by 490 

parallelization in a multi-core computing system, and thus has the potential to be applied by 491 

planning and policy practitioners as a standard assessment tool. The utility of this approach was 492 

demonstrated in a case study in the island of O’ahu, in which several major findings have been 493 

derived: (1) The oceanview is a kind of desirable natural resource that is unequally shared by 494 

people with different incomes, ages and races. Specifically, wealthier and older people tend to 495 

possess higher share of ocean visibility in O’ahu. (2) Man-made buildings have caused large area 496 

shrink and redistribution of ocean visibility. In total, 16.1% of the area in the island has completely 497 

lost oceanview and 27.1% has a decreased oceanview, most of which is in the foothill areas away 498 

from the coast. Most gain is in oceanfront urban areas where high-rise buildings are concentrated. 499 

(3) High-rise buildings have particularly higher impact to ocean visibility in the space. In O’ahu, 500 

every m2 of 50m-high building causes lost oceanview in 3.51 m2 and decreased oceanview in 180.3 501 

m2. The findings suggest that improved environmental assessment processes and planning policies 502 

are needed to mitigate the impact of urban development to the scenic oceanviews. More attention 503 

should be paid to the unequal shares of oceanviews in different population groups and the 504 

associations with public mental health, social disparities and environmental injustice. In the future, 505 

the workflow of this assessment approach will be developed into a more automated and scalable 506 

software tool, which can be easily reused and applied in other and/or larger areas for comparative 507 

studies about and effects of different planning modes in preserving visible blue space.  508 
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